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D. S. Stewart
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J. B. Bdsil
Los Alamos National Laboratory, Los Alamos, New Mexico 87545

Abstract

We summarize some recent developments of J. B. Bdzil and D. S. Stewart’s investi-
gation into the theory of multi-dimensional, time-dependent detonation. These advances
have led to the development of a theory for describing the propagation of high-order deto-
nation in condensed-phase explosives. The central approximation in the theory is that the
detonation shock is weakly curved. Specifically, we assume that the radius of curvature of

the detonation shock is large compared to a relevant reaction-zone thickness.

Our main findings are: (1) the flow is cuasi-steady and nearly one dimensional along
the normal to the detonation shock, and (2) the small deviation of the normal detonation
velocity from the Chapman-Jouguet (CJ) value is generally a function of curvature. The
exact functional form of the correction depends on the equation of state (EOS) and the

form of the energy-release law.

1. Introduction

In this lccture we will describe a theory for unsteady, unsupported, multi-dimensional
detonation propagation for the standard explosive model; the reactive Euler equations for
a prescribed EOS and rate law. For this model, the detonation structure is ZND, i.e., a
shock followed by a reaction zcne which contains an embedded, trailing sonic locus. See

Figure 1. In laboratory frame coordinates, the governing equations for this model are

—g’%-{-p(v-u):O , (1)



pﬁ=—VP ’ (2)
DE ,pDULe) o (3)
m=r ()

where in the above p, u, P, E, A and r are respectively the density, particie velocity,
pressure, epecific internal energy, single reaction progress variable and the rate of forward
reaction. To complete the specification of the problem we need to choose constitutive rela-
tions for the internal energy function E(P,p, A) and the rate law r(P,p,)). For illustrative

purposes we select the polytropic form for E,
E=Le-1n-a) (5)

where v is the polytropic exponent, and g is the specific heat of reaction. The solution of

these equations must satisfy the standard normal shock relations at the leading detonation

shock.

The theoretical developments are carried out in the limit that the radius of curvature

of the shock front (R) is much greater than a characteristic reaction-zone length (r,), i.e.
6=|r, /[RI<<1 . ()

With appropriate assumptions, the main result is that the velocity of the leading detonation
shock along its normal deviates from the Chapman-Jouguet value by a small amount that

is proportional to curvature (in the simplest cases) and more generally is a function of

curvature, i.e.
Dp = D¢y - ax where a= constant or a = a(k) . (N
We were led to the discovery of (i}, by our uesire to formulate a rigorous theory of the

evolution of the detonation shock in complex, two-dimensional (2D) and three-dimensional
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(3D) geometries, which retained full reaction-zone effects, time dependence, and which
was a physically correct and simple-to-use method for correcting detonation velocity. This

study was aimed at gaining a fundamental understanding of multi-dimensional detonation.

Our theory is closely reiated to Whitham's theory of Geometrical Shock Dynamies [1].
Similarly. our theory stresses the dynamics of the shock. However, unlike Whitham. we
have a systematic theory of the following flow that supports the shock that is strictly valid

when the radius of curvature is large compared to the reaction-zone length.

In Section 2, we give a brief history of earlier developments in 2D dctonation theory
We sketch the fundamental approximations and our recent theoretical developments, in
Section 3. In Section 4, we give some examples of fundamental detonation interactions,
while in Section 5. we extend or modeling by examining an energy--elease rate that is
strongly dependent on state. Finally in Section 6, we comment on the practical implications

of the theory for explosive engineering.

2. History of the development

The line of the development of the research presented here can be traced back through
the work of Wood and Kirkwood [2] in 1954. Bdzil [3| in 1981. and through the recent

collaboration of Bdzil and Stewart from 1984 to present. See references !4| ang [5].

The fact the detonation propagation speed is dramatically affected by diverging geome-
try is illustrated by a standard experiment in a rate stick. In that experiment. a cylindrical
stick confined by an inert tube is ignited at the bottom by means oi a planewave explosive
lens and a pad of high pressure booster explosive A nominally plane, overdriven detona-
tion is thus introduced at the bottom of the stick. As time passes, the detonatior. shock
in the stick becomes curved. because the high-pressure flow expands the ivhe walls into
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the relative vacuum surrounding the experiment (i.e., room pressure air). As a result, the
plane character of the wave is destroyed. When a steady detonation develons in the stick
it has an elliptical-like shape. The final steady 2D-detonation velocity can be measured by
simple means and is found to be a function of the radius of the stick and the degree of con-
finement, i.e., tube wall material and thickness. The steady detonation velocity is reduced
irom the 1D Chapman-Jouguet value, D-,;, by an amount that becomes greater as the
radius of the stick. R,, is reduced (see Figure 2 for a schematic diagram). At some critical
radius, experiments using witness plates show that a steady detonation is not propagated

in the stick Presumably some form of extinction occurs.

Thne first theoretical calculations that explained these experimentally observed effects
were carried out by Wood and Kirkwood {2]. They used the basic model described in the
introduction specialized to a steady, radially symmetric flow. By restricting their analysis
to the central streamline. and by further assuming that the 2D radial flow divergence, ¥ u,
was known, they reduced the problem to a system of nonlinear ordinary-differential equa-
tions for the steady detonation structure. In particular, they assumed that the quantity,
T u was related to a single ad hoc parameter ‘e.g.. R) that measures the divergence of
the flow In these equations the detonation velocity. D, is an unknown constant parameter
and R is a specified parameter. Fickett and Davis |6] further showed thai this system of
equations could be reduced to ~ single equation for U? = ju -~ D|3. the kinetic energy in the

main flow direction, as a function of the reaction progresa variable .

A qualitative analysis of this governing equation can be carried out quite corveniently
in the (U3.))-phase plane A given value of D defines the starting value for '3 at the
shock. The task is to determine an integral curve in this plane. that follows U/? as )

changes from A = O at the shock to A = 1 at complete reactien. In the hirmut that the flow



divergence is zero, the integral curve terminates at a singular point at A = 1. When the
flow divergence is non sero, an additional singular po:.nt is found in the phase plane that
corresponds to the intersection of the tnermicity line and the sonic line. The reaction is
incomplete at this new saddle-type singular point. The integral curve will pass through
this point, for only a single value of D for a given R, i.e., D(R). In general, this relationship
must be found by numerical shooting techniques. An excellent account of the details of

ks work is found in Fickett and Davis's book (197¢) [6], Section 5g3.

The next contribution to the development of the current theory is due to Bdzil [3]. He
analyzed the piobiem of a steady-state 2D detonation in rate-stick geometry. This analysis
was rigorous and not ad hoc as was that of Wood and Kirkwood. It was not restricted to
the central streamline, but considered the entire 2D problem. This theory 18 an asymptotic
theory which is consistent with the assumption that the stick radius, R,. is large compared

to a 1D reaction-zone length. Once again a parameter equivalent to
63=ir, /RJ<<1 ,

can be defined. (In Bdzil's account & is related directly to th. angle of the streamlne
deflectic., at the confinement boundary.) This assumption is equivalent 1o a small shock
slope, with an O(1) change in the shock position Z, (measured or the scale o. reaction-

zone lengths) taking place over the lateral distance scale ré ~ O(1) (many react:on-zone

lengthu).

Bdzil found that all the leading features of the flow could be determined, and that
they were varameterized by the shock locus function, Z, In turn, the shock locus was a
fanction of the scaled transverse coordinate ¢ = ré and. for a particular example involving

the choice of EOS and rate law, satisfied the second-order ordinary-differeitial equation

3
Dq,1dZ,)  d3Z, T
,_2__ —JS:‘] = u—JET D . (8)



where D3} ig identified by the expansion
D= Dc_’ -+ 62D(2)
and measures the deviztion of the steady detonation velocity from D, .

The position of the shock, Z,, is measured from a plane, Z = constant, which moves
with the steady detonation velocity, D. The function Z,(¢) determines the local detonation
velocity normal to the shock along its extent. Indeed, even though this is not made explicit

in Bdzil’s paper, equation (8) is equivalent to the ccordinate-independent statement
Dy, = D¢y - ar + ox) . (9)

where D. is the velocity along the shock normal. In the above., a is a constant (the

assumptions about the EOS and rate law in (3] give a a specific value).

In 1984 we started work on the simplest, most straightforward extension of this steady
theory that would include time dependence. We noticed tkat in order to include time
dependence in a quasi-steady theory, it was necessary to introduce a slow-time scale such
that the time dependence entered the iheory at the same order as the shock curvature.
In particular if on the reaction-zone length scale the shock locus, Z,, is an O(1) function,

then the relevant slow-time scale is
r=6 (10)

where t is measured with the reaction-zone time scale. Calculations with these scaling
assumptions show that at leading order, the flow through the reaztion zone has the same
form as it does in the steady-state problem. i.e.. 1t is quasi-steady However, the shock
locus. which is what parame.erizes the solution, i1s now a function of both the scaled
transverse coordinate ¢ and the scaled time r
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In contrast to (8), the shock locus, Z,, now satisfies the partial-differential equation

3
0Z., D 22 932
or g.’ [ afs =a 3(’. -b@ -, (11)

where Z, is measured from a constant velocity plane. The above equation is a nonlinear
heat equation. Indeed for a = constant, equation (11) can be reduced to a Burgers’
equation for the shock slope, 3Z,/d¢. On these length and time scales ¢ and r, the
evolution of the shock is not governed by a hyperbolic equation, but by the parabolic
equation (11). A natural question to ask is why do we find a parabolic evolution equation

for a system of hyperbolic equations?

The answer is found in Bdzil and Stewart's [4] (1986) paper on time-dependent 2D
detonation. In that paper, we studied the transients that carry an initially 1D detonation
into a steady-state 2D detonation. In the example we considered, an initially steady
1D detonation encounters an unconfined corner in the explosive (see Figure (3a)). After
the wave reached the corner, the explosive products expanded into the vacuum and the
detonation shock began to curve. Because the problem is hyperbolic, a traveling wave
head was defined on the detonation shock to the left «f which there was no disturbance of

the 1D detonation.

We selected the expiosive EOS and rate law with the goal of achieving a 1D detonation
that was linearly stable to both transverse and flow-direction disturbances. With this goal
in mind, we adopted a polytropic EOS model and & rate law for which most of the chemical
heat release is given up immediately behind the shock. This was followed by a smaller
resolved heat release that took place over a finite distance behind the shock and which
controled the dynamics of the problem. For this “small resolved heat-release model,” the
dynamics of the 1D detonation occur on the “fast™ time scale 6t. Qur results showed that
disturbances ori the shock propagate according to a hierarchy of two distinct flow regions
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which occur on the time scales 8t and 63t.

In the first region the displacement of the shock is small and the dynamics, which occur
on the §t time scale, is wave-like (hyperbolic). This region contains the hydrodynamic
wave head, i.e., the leftmost point of the shock disturbance. The magnitude of the shock

displacement, length and time scales for this region are given by

Z, ~ O(6) .iith §'/2r 6¢.

The second region is a diffusion-like region (parabolic). In this region the shock dis-
»lacement from plane is the largest and the disturbance extends over both the greatest
length and time scales. The magnitude of the shock displacement. length and time scales
for this region are given by

Z, ~ O(1) with br,6%.

Figures 3a and 3b shows a schematic diagram of both the initia' configuration and the

evolutionary phase of the detonaticn shock for these two regions.

What we learned from [4] is that the parabolic flow is naturally embedded in the hy-
perbolic system. The hyperbolic region while defining the wave head of the disturbance is
associated with a small amp'itude shock deflection. In contrast the parabolic region is asso-
ciated with a large scale shock deflection and is the most important region to characterize
and measure. The advantage of this description is the relative simplicity of the parabolic
region. which involves at most the solution of a simple seccnd-order partial-differential
equaticn (the nonlinear heat e uation) Additionally, practical experience with the tech-
nologically important case of condensed phase propellants and explosives shows that they
have broad well defined detonation shocks. To check the validity of the steady theory for
condensed phase explosives, Engelke photographed the shock loci and compared them with



the predictions of the steady theor: See Bdzil [3] and Engelke and Bdzil [7]. The theory
and experiment were shown to be in qualitative and even quantitative agreement. There-
fore, consistency of the unsteady and steady theories then also argues for the parabolic

scales.

The results of [4] confirmed the importance of evolution equations of the parabolic
type which were discovered earlier. The earlier work was eventually recorded in a pa-
per by Stewart and Bdzil [5], where some examnles of relationships between the normal

detonation-shock velocity and the curvature were derived for the first time.

The simplicity of the parabolic description makes it possible to do routine calculations
of a class of unsteady detonation problems. The detonation-wave spreading problems
of greatest interest occur in explosives with complicated shapes. If we are to apply the
parabolic description outlined above to such problems, we need to carry out the analysis
in a system of intrinsic (or problem determined) coordinates. These calculations are the

subject of the next section.

3. Sketch of the analysis

In this sect.on we sketch the analysis and explain the approximations used in deriving
the shock-evolution equation and the flow description. The model equations are the reac-
tive Euler equations, subject to the shock Hugoniot conditions for a specific EOS and rate
law. The presentation here is an outline of the more Jetailed discussion found in Bdzil and

Stewart (8.

The coordinates we choose are shock-attached coordinates. and the problem is three
dimensional. Here £, represents arc length alonyg the shock in the directions of the principle
curvatures (1 = 1,2) defined by the instantaneous shock surface. The variable n represents
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the di.tance normal to the shock. The coordinates £ and n form a locally orthogonal
coordinate system. A picture of the intrinsic-coordinate system for 2D is shown in Fig-
ure 4. Because we have chosen an intrinsic-coordinate system, the shock curvature appears

explicitly in the governing equations of motion. These equations become

Mass: pr— [p(D.. - u,.)]-n + KPpUn +...=0, (12)
Energy: E¢-(Dn-ua)Fn-(Pip?)[pe~(Dn-ua)on|~...=0, (13)
Momentum
n:  tng~(Da-ta)inn~(1/p)Pn~...=0, (14)
£: g~ (Da-ta)uga=...=0, 1=1.2 (15)
Rate: Ae=(Da-un)Aa=r—... . (16)

Note that D., is the instantaneous shozk velocity along the shock normal. u, and u, are
laboratory-frame particle velocities in the n and §,-directions respectively. The curvature
that appears in the above equations is the sum of the principal curvatures, x = x| +~ 3.

Higher orde: terms in the shock curvature are indicated by ellipses.

To these equations we add the shock relations
i’-Dnzp-(Dn“uu-). P_=ﬂ_un,Dr. A, =0,

(17)

D2 P. 1y 22
T=E_+-E—+§(Dn—u.._;_) . U- =0.l=1.2.

The minus subscript refers to the state ahead of the shock, the plus subscript refers to the
state behind the shock. In these reiations we have adopted the strong shock approximation

and have set terms proportional to P- to zerc (we have anticipated that £E_ ~ P_/p_).

We make the explicit assumption that the curvature is
x = 8%k, 62 <1 . (18)
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where & is the scaled shock curvature and 62 measures the magnitude of curvature relative

to the 1D reaction-zone length. The length and time scales required are
r =63, n, and ¢, = 6§, for 1=1,2 . (19)

We introduce the formal expansions for the dependent variables

un = u'? 62,32 4, u,, =62u_§.2)+...!

P=PO 4+ §2p3) 4 | p=p0 +§3p2) 4+ | (20)
A=A 48232 4 | Dp=Dqy +63D e, 1) +....
Using these expansions in equaticns (12) — (16) we find that through and including O(63),

the equations that govern the flow reduce exactly to the equations for quasi-steady flow in

cylindrical geometry

_[p(D,‘—u,‘)]-n-f-ltpun'f'---=0! (21)
(Da~un)E.n~(P/6?)[(Da~un)on|+...=0, (22)
(Da - %a)tnn+(1/0})Pa+...=0, (23)

(Dn = tn)ug n+-..=0, 1=12 l24)
~(Dn-ua)Aa=r-..., (25)

since from equation (24) and the shock conditions it follows that u; =0.

In Section 2 we mentioned that Wood and Kirkwood [2] treated the central streamline
problem. Equations (21) - (25) taken together with the normal shock relations are equiva-
lent to the problem they treated. Now, the terms due to the flow divergence are rigorously
identified as being proportional to the local shock curvature, x. The above problem .hen
admits an eigenvaiue detonation as its solution. As Wood and Kirkwood showed, it defines
a relation between the twe parameters D, and x as a condition necessary for the integral
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curve in the (u3, A)-piane to pass through the sadale singular point, where the flow is sonic.

Generally speaking, we have the requirement that there exists a relation of the form

Da = Dan(x) . (26)

To illustrate this point we give the equation. Let U, = un — D4, and consider the

polytropic EOS
E=§(~,_1)-l_q;\ . (27)

Straightforward manipulation of equations (21) - (25) yields the single ordinary-differential

equation for U2 in terms of A, namely

sz _ 20t{atr - 1r -3 (Da+ U2)e]
a r(e?-03)

. (28)

where the 3ound speed is given by ¢2 = 4YP/p = (v - 1)[(D?. - U.'{)/2 + qA]. The shock
boundary condition requires that

U =__DL("‘_1)
n+ (_7+1)

(29)
Following the ncmenclature of Fickett and Davis, the { }-term in the numerator of (28)
defines the thermicity locus in the (U/3,))-plane, and (¢3 — U3) defines the sonic locus.
These curves, ulong with r = 0, define the seperatrices and their intersections define the
singular points in the phase plane. The object in the phase plane is to find the integral
curve that starts from the shock value given by (29) and terminates at complete reaction.
Typicall’ such curves must pass through a singular point defined by the intersection of the
sonic and thermicity loci. Since x is amall, the intersection point is very close to complete
reaction. As mentioned before, this point is a saddle To ensure passage through the

saddle, condition (26) must hold.



In order to give a specific form to relationship (26) we must give the rate law. In

Stewart and Bdzil [5] it is shown that for the choice

r=k(1-2)", for O<v <1, (30)
equation (26) takes the fcrm
7 ~2D3. (1 +vl X 2
Dn = Dejy-ar+o(x),a= "‘—('7_'*"?5_2/ (I—A)" . (31)

For the special case of simple depletion (v = 1) it can be shown that for diverging geometry

(x> 0)

a2
Dn = D¢, +Bntn(x)+2[3u[tn(l’3iDc1)—3]+.... Bsk—‘(,"—?_iﬁ-, i (32)

4. Detonatlion interactions

The formulas given in the last part of Section 3 show that the detonation-shock velocity
is a function of the curvature of the shock. In order to describe the evolu.ion of the shock we
must have a seconc relation between D, and x. Using the surface compatibility conditions
of differential geometry, we liave derived sucl. a second relation. We call this relation the

kinematic-surfece condition

~(3Dne) +D.._--(‘/ xdf) . (33)

where £° is a fixed reference position on the shock (see Figure 4). In 2D, the natural
representation of the shock locus 1s in terme of the 2ngle @ that the shock normal makes

with respect to a4 fixed reference direction. Then ¢ is relrted to the shock curvature by

{ ]
o= /; xdf (34)



If we consider the simple case given by equatior (31) and use the scalings given by
equation (19), we find that equations (31) and (33) imply the following equation for ¢,

b+ 2200, a0y (35)

Equation (35) is Burgers' equation for . The constant a plays the role of viscosity.
Burgers’ equation has analytical exact solution via the Hopf-Cole transformation and its
dynamics have been :tudied extensively. Thus for this example, fundamental shock inter-
action problems can be studied with these exact solutions. According to our theory, there
nuw exists a catalogue of solutions for detonation-shock interactions, that is similar to the

catalogue of sclutions to Burgers’ equation.

Two simple examples from this catalugue are the step-shock solution and the N-wave
solution to Burgers' equation. The step-shock solution corresponds to the solution for
two colliding detonations, providing that the detonating material is large enough that the
detonaticn-shock angles are constant in the far field. If two plane detonations are initiated
obliquely so as to run into one =nother, the slope of their common intersected shock locus
starts from the left with one value and moves tc another value as we pass to the right.
Solutions to Burgers’ equation show that ultimately a steady-state step-shock soluticn is
attained with a definite shock-shock [1] thickaess that depends on a. This interaction

mimics a reactive Mach stem. Importantly, it is diffuse (see Figure 5a).

The N-wave solution correaponds to a positive shock imperfection. In the right and
left far field, the detonation s flat and hence ¢ is zero In the center the shock is raised,
giving rise to an N-shapa for &, from left to right. The N-wave soiution then shows
that this imperfection ultimately “diffuses™ away; the time required for “diffusion™ of the
imperfection depends on the value of a (see ['igure 8b)
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8. Stronger state dependence of the rate

The results given by equations (31) and (32) show that the exact functional form of
the detonation-shock velocity vs curvature relationship depends on the details of the rate
law. Bdzil's [3] results, for steady 2D detonation, showed that as the sensitivity of the rate
to the local state is increased, a steady solution dozs not exist when the curvature becomes

sufficiently large. This theoretical observation is consistent with experimental observation.

In this section we present a simple model that shows the consequence of increased state
sensitivity. Consider the following shock-state dependent rate (shock-state dependence s

typical of solid high explosives)

r=kf(A) =k exp[-6(Dc; - Da)|f(2) . (36)

Since D, is proportional to the shock pressure, the rate multiplier k is now a functior of
how hard the particles were hit by the passage of the shock. Individual particles react
at a rate that is determined by how hard they were shocked. The fact that the state
dependence is sensitive (i.e., large changes in r occur for small changes in D. ), is modeled

by requi.ing that the dimensionless parameter
0Dc,; >>1 . (37)

For the purpose of this illustiation, we further consider tne following distinguished limit

relaring the large parameter D, and 62
-1
[6DCJ] = 62 (38)
U.ing the expansion for D, the rate law hecomes

r=k exp[D.‘.”/DC,]f(A) (39)

15



Now it is easy to see that for the case f(A) = (1 - ))*, where 0 < v < 1, equatio.. (31)
still holds, with the exception that k is replaced by k exp [D.(.’) /D¢ _,]. Using the previous
definition for scaled curvature, x = §3R, we find the reduced shock velocity curvature

relation becomes
~(D{/Dcy)exp[DE | Dcy| = & (40)

where & is given by equation (31) for a, with k replacing k. We rewrite equation (40), in

order to compare directly with (31) and (32);

Da = D¢y - ax exp [-o(D.. - DC,)] . (41)

Frcm equation (41) it is simple to show that for the reduced curvature & in the range 0 <
% < Rcr, that there are two values for D{?). Hence the detonation velocity is multivalued
for positive (divergent) curvature below a critical value of curvature (see Figure 6). For
values of curvature above the critical value, it is not possible to have detonation-shock
evolution described by the paralolic scales. A possible consequence of this is extinction of

the detonation wave on portions of the curve where the critical curvature is exceeded.

6. Practical implications for explosive engir.eering

The theory discussed in this lecture pertains to explosive materials in which a brcad,
well-defined detonation shock is observed in the limit that the radius of cusvature is large
compared to the distance from the leading shock to the sonic locus. Indeed this is the case

of practical interest for a wide class of explosives.

Engineers who design explosive charges typically use the Huygen's rule of detonation
propagation whereby the detonation shoch is advanced along its normal at the corvtant
Chapman-Jouguet velocity. Our results indicate that this “recipe™ should be modified,
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and that the correction factor is generally a function of the curvature. In addition our
results show that the detonation structure from shock to sonic locus is easily calculated

and is locally a 1D, cylindrical, quasi-steady flow.

The theory then suggests that the D,(«) relation may describe the shock evolution for
certain explosives for a wide range of initial and confinement cc nditions. If this theoretical
statement is true, then Dn(x) can be determined directly from experiment. For example,
Da.(x) could be determined from photographs of steady detonation-sho<k loci in rate sticks.
Suppose the steady detonation velocity, D, along the axis of the stick has been measured.
If ¢ is the angle that the shock norinal (taken from the photograph) makes with the axis

of propagation, then the normal velocity is given by
Do=D cos ¢

The shock curvature x could be inferred from the photograph as well. Thus for the extent of

the shock locus shown in the photogiaph, a portion of the D, (&) curve can be constructed

Other experiments, steady ~r unsteady, in totally different geometries, properly an-
alyzed. should reproduce the samr D.(x) in regions of ovaerlap. Consider the case of a
1D, unsteady cylindrically or spherically expandir.g detcnation. In this experiment D, is

simply R. the rate of change of the radius from the central point, while x = 1/R.

Thus the experimentally determined Da(x) curve, would dctermine the detonation
characteristic for many different geometries and coniigurations without our having detailed

knocwledge of either the equation of state or the energy-release law
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Figure captionso

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

A schematic representation of the detonation shock with normal and trailing sonic

locus displayed.

Rate sticks and the diameter effect. Figures 2a and 2b show schematic diagrama
of a standard rate stick experiment. Figure 2a shows the stick prior to initiation.
Figure 2b shows steady propagation. Figure 2c¢ shcws the steady value of the
detonation velocity D minus D, plotted versus the inverse of the stick radius, R;!.
Twe different cases showing resuits for strong and weak confinement are shown.
The open circles show extinction points which indicate no steady propagation for

srnall radius tubes.

Figure 3a shows the configuration prior to the 1D detonation reaching the vacuum.

Figure 3b shows subsequent detonation evolution at two times.
A sketch of the 2D inirinsic shock-attached coordinate system.
Two examples of det-:nation shock interactions.

Scaled detonation velocity D.‘.”/DCJ ve;sus scaled detonation rhock curvature &.



